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Beta-neutrino angular-correlation coefficient in 21Na 

 

I. S. Towner and J. C. Hardy 

 

Recently [1], an ‘exact’ calculation of the beta-neutrino angular-correlation coefficient for 21 Na 

was published. The coefficient is defined as  
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	ሻ being the major contribution, where a1 = gVMF and c1 = gAMGT  

with MF and MGT being the Fermi and Gamow-Teller matrix elements and gV  and gA their respective 

coupling constants. Here W is the electron total energy expressed in electron rest-mass units. We 

computed the correction ܽ߂௘௩ using the exact formalism of Behrens and Bühring (BB) [2] and found 

Δaev, when averaged over the electron energy spectrum, gave a correction of order 1%. Alternatively 

computing the correction with the formalism of Holstein [3] we found the correction to be much smaller, 

of order 0.05%. To try and resolve this discrepancy we have been working with the BB formalism, 

identifying the leading order terms and comparing them with those of Holstein.  

The beta-decay differential decay rate is written as 
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where ࢖ෝ	and ࢑෡	are unit vectors in the directions of the electron and neutrino respectively. Here ଴ܹ is the 

maximum value of ܹ, ଶ݌ the electron momentum ݌ ൌ ܹଶ െ 	1 in electron rest-mass units and ܨሺܼ,ܹሻ 

the Fermi function. The beta-neutrino angular-correlation coefficient is defined as 
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Holstein [3] gives expressions for the spectral functions with electromagnetic corrections to order 

ሺܼߙሻ. It is convenient to write out separately the Fermi and Gamow-Teller pieces, ଵ݂ሺܹሻ ൌ ଵ݂
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writing them as 
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For a mixed Fermi plus Gamow-Teller transition, these expressions are combined by defining  
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where, for example, ܣఈ ൌ ሺܽଵ
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ଶሻ and likewise for ݇ఈ, ܤఈ and ܥఈ.  

In comparing our results from BB with the expressions of Holstein, we note two main differences:  

 There is no electromagnetic (αZ) correction to Holstein’s weak-magnetism form factor;  

 Behrens-Bühring argue that (W0R) and (αZ) are comparable small quantities and expressions 

evaluated to second order should contain terms in (W0R)2, (W0R)(αZ) and (αZ)2. Holstein does 

not provide any corrections in order (αZ)2 .  

These differences do not represent errors, but reflect different approximations made in the derivations. 

There is little numerical consequence from the second item in this list. It is the electromagnetic correction 

to the weak-magnetism form factor that explains the differing beta-neutrino angular correlation values in 
21 Na. 

To illustrate this, we perform a shell-model calculation with the USD effective interaction [4] of 

the nuclear matrix elements involved in 21 Na beta decay. Note that the Gamow-Teller form factor, c1 , can 

alternatively be determined from the experimental ft value using ݂ݐ	 ൌ
଺ଵସ଴

஻ሺீ்ሻ
	and	|ܿଵ	| ൌ 	ඥܤሺܶܩሻ. Thus 

we have adjusted the gA value so that when combined with the shell-model matrix element MGT the 

experimental c1 value is obtained. With these shell-model values we compute the beta-neutrino 

correlation coefficient, aeν, (averaged over the electron energy spectrum) with the formulae from Eq. (4) 

and ‘exactly’ using a computer code [5] based on the Behrens-Büring formalism. In the exact 

computation, the spectral functions f1(W) and f2(W) are obtained in numerical form. We therefore use a 

least-squares fitting program to fit these tabular values to the expressions given in Eq. (4). In the fitting 

only two parameters could be usefully determined; so for f1(W) we fixed B1 and C1 to the values given by 

the formulae and determined k1 and A1 . Likewise for f2(W), we fixed B2 and C2 and determined k2 and A2 . 

The results are given in Table I. One sees the Behrens-Bühring formulae agree well with the ‘exact’ 

Table I. Values of the coefficients in the spectral functions ࢌ૚ሺࢃ ሻ and ࢌ૛ሺࢃ ሻ, Eq.(5), for the beta decay of 21 Na 
obtained from the formulae of Holstein and Behrens-Bühring and the ‘exact’ computation. 

 k1 k1A1(%) k1B1(%) k1C1(%)   

Holstein 1.00417 -0.027 0.115 -0.003   

BB formula 1.01133 -0.027 0.115 -0.003   

BB’exact’ 1.01066 -0.020     

 k2 k2A2(%) k2B2(%) k2C2(%) aev Δaev 

Holstein 0.55489 0.188 0.000 0.002 0.55867 -0.00028 

BB formula 0.55296 0.187 0.020 0.002 0.55286 -0.00592 

BB’exact’ 0.55243 0.195   0.55330 -0.00548 
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computed values, while the Holstein formulae appear deficient in the energy-independent coefficients k1 

and k2. This we trace to the absence of the electromagnetic weak-magnetism term in the Holstein 

formulae.  
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